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Abstract

This paper focuses on a method of constructing panora-
mas from a quadcopter, and a new mosaicing sub-problem
when the scene contains significant regions of vacant
spaces. These vacant spaces yield little to no features to
match input images and hence challenge existing mosaicing
techniques. We describe a framework that is able to handle
this unique input by leveraging the availability of the iner-
tial measurement unit (IMU) data from the quadcopter.

Specifically, our method uses the imprecise IMU data ac-
companying a video to select a subset of images that contain
interesting scene content. When the scene is such that this
subset contains no vacant space, an appropriate panorama
is effected; however, with featureless spaces, existing mo-
saicing methods do not work. In this paper, the subset is
partitioned into multiple clusters. These subsets can now
be stitched into a series of mini-panoramas, but a complete
mosaic is not yet available. The gaps between these mini-
panoramas represent regions of featureless spaces in the
scene. Therefore, we once again use the IMU data together
with a novel stereo reconstruction to determine appropri-
ate portions of the images to complete the panorama. We
demonstrate the efficacy of our approach on a number of
input sequences that cannot be mosaiced by existing meth-
ods.

1. Introduction
Finding features and using them to align images to con-

struct panoramas is one of the success stories of computer
vision. Virtually all recent consumer cameras have this
technology embedded. The success of these methods relies
significantly on finding common features in the images that
can be used to establish the appropriate warps to register the
images together.

Problem Definition: There are scenes, however, that
makes this challenging. One situation is when the scene
needs to be probed in an orthographic view, and is not eas-
ily accessible. Murals on large urban architecture is an ex-
ample. This suggests a ‘close up orthographic view’ by a
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Figure 1: The long range photograph of a scene taken from
an SLR camera is shown in top right. When such a scene is
probed by a consumer-grade quadcopter, it results in the in-
put images shown on the left (color balance is different from
the SLR camera). The state of the art methods (middle col-
umn) are unable to make a single mosaic because the vacant
space (more than two feet wide as seen in third picture on
the left) does not seem to have any matchable features with
subsequent input images. Our method handles this situation
(bottom right) producing an orthographic view.

moving camera fitted on, say a quadcopter. Another situ-
ation is when scene patterns and texture are repeated (too
many similar features in, e.g., an art exhibition). This can
make it challenging for a matching algorithm to find ap-
propriate matches in large panoramas. A related situation
is when a scene area simply does not contain features (too
little, or no features, e.g. multiple adjoining posters in an
conference event). Fig 1 shows an example of this case.

In such cases, state of the art methods are unsatisfactory.
For example, the use of a moving quadcopter taking pictures
suggests using a Structure from Motion (SfM) paradigm.
However, based on our experiments with Bundler [17, 18]
and VisualSFM [21], we see that the success of SfM de-
pends strongly on “good” correspondences between input
images, absent in large vacant (featureless) spaces. Special-
ized – state of the art – image stitching methods from [5, 7]



used in tuned software like Adobe Photoshop CS6 or Au-
toStitch also do not work as can be seen in Figure 1.

The goal in this paper is to create panoramic images
of large scenes using a quadcopter in situations described
above. From a vision perspective, we are excited about
a new mosaicing problem containing large homogeneous
vacant spaces. This results in scene regions that have no
matches between many significant images, and therefore
cannot be aligned using traditional mosaicing methods.

Key Idea We propose to solve the vacant space problem
by using an inexpensive off-the-shelf flying device, such as
a quadcopter which can be assumed to contain an inertial
measurement unit (IMU) that has spatial information. The
proximity relationship that the resultant images have, can
be used to significantly reduce the search space in finding
matches. Further, the proximity relationship also allows,
in principle, to vary the parameters involved in feature se-
lection. For example, if there is reason to believe that two
images are adjacent horizontally, one can choose to adjust
thresholds in feature matching algorithm to hunt for other-
wise elusive matching pairs.

We note that the IMU data can be also made available
in other devices such as smartphones. An autonomous pro-
grammed quadcopter, however, is particularly enticing be-
cause of its ability to fly to areas that are accessible to the
human eye, but inaccessible for the human to reach. Such
areas do not lend themselves easily to high quality images.

A new challenge, however, presents itself. The IMU
data, whether on an expensive smartphone or on an inex-
pensive quadcopter, cannot be relied exclusively, or some-
times at all. Our experiments indicate that the roll and pitch
angles (depending on the distances involved) may be com-
pletely off, and so can the positional coordinates. This is a
consequence of jerky, swift movements. Even if the inex-
pensive quadcopter is endowed with a GPS, indoor scenes
present a challenge. Therefore, whenever there is overlap in
feature space between images we use superior vision tech-
niques (specifically, homography) to stitch i.e., to construct
mini-panoramas. However, when vision is inappropriate,
due to the present of vacant spaces, we use the IMU infor-
mation to join mini-panoramas into the complete panorama.

Contributions The main technical contribution of this
paper is that it improves the state of the art in mosaicing.
We assume that the imagery is acquired by a quadcopter for
the reasons mentioned above. Sending a battery of images
from a quadcopter to an image mosaicing algorithm such as
AutoStitch incapacitates the algorithm because of the sheer
number of images. Sending a sampled version of images
to a manageable number N of images, with O(N2) possi-
ble areas to match for features, also does not work since the
sampled image contains vacant space. In this paper, we use
the IMU information that lends itself to a graceful O(N) al-
gorithm. In summary we have a solution to a new problem,

and a faster solution using the IMU data.
In this paper, we assume that the scene lies on a planar

surface The quadcopter is programmed to have a viewing
angle perpendicular to any desired planar structure. The
standard homography computation is still not possible be-
cause of the vacant spaces. To overcome this, we reduce the
mosaicing problem to the stereo problem and are thus able
to complete the panorama.

2. Related Work

Panoramic image stitching (alternatively, image mosaic-
ing) is a well-studied problem in the field of computer vi-
sion. Representative works include [14], [15], [8], [20] [6]
[5]. A full discussion on related works is outside the scope
of this paper, readers are referred to [19] for an excellent
survey. Given the maturity of this area, there are various
freeware as well as commercial software available for per-
forming image stitching; most notable are AutoStitch [3],
Microsoft´s Image Compositing Editor [13], and Adobe´s
Photoshop [1].

All of these methods are based on a similar strategy of
finding features in each image, matching these features be-
tween images, and then computing pairwise image warps to
align them together. A bundle adjustment is often applied
to globally refine the alignment. All of the aforementioned
methods assume the imaged scene is planar or that the cam-
era has been rotated carefully around its center of projection
to avoid parallax.

Brown et al. [7] proposed a method that used invariant
features located at Harris corners in discrete scale-space and
oriented using a blurred local gradient for stitching. Eden et
al. [9] were able to stitch images with large exposure differ-
ence as well as large scene motion into single HDR quality
image without using any additional camera hardware.

All of the image mosaicing methods work only when
there is an “intersection” in feature space of images to be
stitched. When there are “gaps” (either physical or due to
lack of features) between images to be stitched it is not clear
how to perform the stitching. In this paper, we discuss how
to use the available IMU data that accompanies our input
images to help overcome these problems.

3. Methodology

The goal of this paper is to compute a panorama of
a scene lying on planar surface that is, possibly, difficult
to reach manually. The scene is assumed to have vacant
spaces. A schematic for this problem is shown in Figure 2.

The method adopted is pictorially depicted in the
overview shown in Figure 3 and is described in detail later
on. In brief, we systematically acquire a video of the scene,
reduce the input video to a manageable number of images,
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Figure 2: Problem definition. (Top) Vacant spaces are en-
countered in various scenes. When individual portions are
captured by a quadcopter, how does one create the complete
mosaic given that common features are either not available
as in this example, or confusing (see Fig. 10)? (Bottom)
Simplified reduction of the problem.

and finally combine the images acquired from different po-
sitions into a mosaic.

3.1. Video acquisition

We first dispatch the quadcopter to as close to the scene
as possible. The corners of a rectangular area of interest are
provided to the quadcopter, and it is programmed to traverse
the area in a raster scan fashion. There are various control
aspects involved in sending a quadcopter; in outdoor areas,
the quadcopter is impacted by wind and it might lose its
way. The control aspects of the quadcopter is beyond the
scope of this paper. Note that trying to create a mosaic in an
incremental linear fashion by combining adjacent frames is
prone to loss of two-dimensional spatial proximal informa-
tion. It is also computationally overwhelming.

The quadcopter returns with a video of the scene. Images
extracted from a short video of about a minute or more over-
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Figure 3: Overview: Input imagery is systematically ac-
quired (top left) by a quadcopter. In the next step, inter-
esting images are found by clustering the video into re-
gions based on positional data. A graph is constructed us-
ing proximal images. For each connected component in
a graph, standard stitching techniques are used to create
mini-panoramas which are then joined together into super
panorama again using the IMU data.

whelms existing mosaicing software, such as AutoStitch or
Adobe Photoshop1

3.2. Selecting interesting images

Our goal in this step is to reduce the amount of input data
and produce a set of interesting images. In other words,
we wish to convert a video into an album of images. The
key difference between our problem and standard albumiza-
tion [2, 12] is the use of positional information. A standard
quadcopter has an IMU that, after calibration, may give rea-
sonable information of positions. Using positional informa-
tion it is possible to cluster the images, and sort the images
into an m × n grid. The number of cluster centers is au-
tomatically determined using the agglomerative bottom up
hierarchical clustering method [16], with the additional re-
quirement that the whole scene (represented by the posi-
tional data) is covered.

Clustering Details We assume that each IMU data posi-
tion corresponds to an image of definite fixed dimensions.
Consider each position of the IMU data to be a leaf node.
Two nodes are greedily combined based on the closest Eu-
clidean distance, and replaced with an internal node; the po-
sition of the internal node is set to be the centroid of the two
nodes, and each internal node now corresponds to a virtual
image of the same size taken by a virtual quadcopter. The
algorithm recursively merges all the nodes till we end up

1In the rest of this paper, we use AutoStitch to indicate state of the art
stitching programs such as AutoStitch, Photoshop, etc.
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Figure 4: We align the image stream with the IMU data,
and then transform the video into a set of interesting images
with a clustering algorithm.

with a root. In the next phase, we produce cluster centers;
a set of nodes is considered for being the output as clus-
ter centers if the union of these nodes completely spatially
cover the scene. From the bottom-up construction, it is clear
that the root will represent a single position, and thus a sin-
gle virtual image, and will not cover the scene. At the other
extreme, the set of all leaf nodes will cover the scene. To
resolve this, during the calibration phase, we pre-decide the
minimum distance between two center of projection to have
least overlap. This is used as the threshold in the cluster-
ing algorithm. Once cluster centers are found, we pick the
leaf node which is closest to the cluster center to find a real
image. This process is schematically shown in Figure 4.

Remarks: If we had no IMU information, one may con-
sider selecting a set of interesting images using any appear-
ance based method such as optical flow or feature selection.
However, due to the jerky and uneven motion of the quad-
copter, such measures do not prove to be sufficient.

In practice, the number of cluster centers and thus im-
ages for the scenes we have covered is now within the ca-
pacity of AutoStitch. As mentioned in the introduction,
as long as there are sufficiently varying and “matchable”
features, AutoStitch is able to perform a reasonable result.
However, if there are very few features in overlapping re-
gion of two images, then the output is not acceptable. This
situation will arise when there is vacant space in the im-
agery.

Time complexity AutoStitch has not been designed to
use positional information. As a result if there are N input
images, the program has to consider possible matches in
approximately O(N2) set of areas. Our program is able to
mosaic in an O(N) fashion.

Mini-Panoramas Specifically, we assume at this point
that the interesting photos are available in the form of a
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Figure 5: Interesting images acquired are segmented and
individual (mini-panoramas) are constructed. These are
then later combined into the desired super-panoramas using
the IMU data.

m × n grid. First, we find SURF [4] features for each
image in a grid. Next, we use Best of Nearest Neighbor
matcher (from the OpenCV library) with Random Sample
Consensus (RANSAC) [10] to find geometrically consistent
matches between neighborhood images inside grid. We cre-
ate a graph with images being nodes, and add an edge be-
tween two nodes if there are sufficient matches. We have to
recall at this point that if there are “vacant spaces” there will
not be enough features for successful matches; the graph
will end up with multiple (disconnected) components. We
next compute multiple spanning trees for the various com-
ponents. Given a spanning tree, the center of the spanning
tree is a node from which the distance to all other nodes is
minimal [11]. Next we calculate the homography of each
image with respect to spanning tree center. Finally, for each
spanning tree, we stitch all pictures within the spanning tree
to create a mini-panorama using the computed homogra-
phies by warping all images with reference to the image at
spanning tree center. The spanning tree is an O(N) struc-
ture. The process is described in Figure 5.

3.3. Super-panorama

In this section, we consider the situation when programs
like AutoStitch fail. We assume that the output of the previ-
ous step has resulted in multiple spanning trees where each
spanning tree center corresponds to a specific depth, since
we have stitched all images by taking the spanning tree cen-
ter as a reference. Individual panoramas for each spanning
tree termed mini-panoramas have been created. A super-
panorama must be created from mini-panoramas; these usu-
ally correspond to different depths for at least two reasons.



First, it is invariably difficult, if not impossible, to con-
trol a quadcopter to be at the exact depth even in indoor
scenes. The aerodynamics and the thrust produced tends to
make the quadcopter drift. Second, it might also be nec-
essary to let the quadcopter probe and come closer to the
scene so as to get a “good picture”.

A super-panorama is done using a two step process. As-
sume two trees in the forest corresponding to area A and
area B of the scene (see Figure 6). Assume that a mini-
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Figure 6: (Top) The virtual picture as seen from posi-
tion B’ is computed using Equation 1 from the real picture
taken from B. (Bottom) Using the stereo disparity, calcu-
lated from the baseline width b and depth Z’, it is possible
to depict the composite scene obtained from both A and B’
(from the view point of A).

panorama is created from these two areas, and the depth of
the planar surface from the camera is more for A, than for B.
We then take the mini-panorama image captured at B, and
‘move’ it to a new location B’ whose depth (from the im-
aged surface) is the same as that of A. The resulting image
will be smaller; the images are related by the equation

x′

x
=

Z

Z′ (1)

Figure 7: Candidate images (from different depths) for a
super-panorama. For context, see Fig. 10. These images
are ‘reference‘ images (spanning tree center) of individual
mini-panoramas.

where x (respectively x’) represents a pixel location of the
image in B (respectively, B’) and Z (respectively Z’) repre-
sents the depth of the images surface from B (respectively,
B’).

In order to form a super-panorama from the depth of A,
we can now treat the resulting images from A (unchanged)
and B (computed from Equation 1) forming a simplistic
stereo pair at the depth of position A. Using the stereo
disparity formula we can “place,” from the view point of
A, the image captured from B’, thereby creating a super-
panorama. (We could as well present the entire scene from
the viewpoint of B’ (since it is at the same depth); we prefer
these pictures to the one that one may be created from the
depth of B.)

Example: Consider two images (shown in Fig. 7) taken
from the positions (1.37, 0.85, 1.6), and (3.75, 0.98, 1.4).
As their depths are different, we (virtually) move the second
image by shrinking the second image by a factor 1.4

1.6 , i.e., to
87% of its original size. With both images at the same depth
(1.6m), the disparity of the second image is

disparityx = (3.75− 1.37)f/1.6 = 839
disparityy = (0.85− 0.98)f/1.6 = −45

where f is focal length of the quadcopter camera in pixel
units.

3.4. Summary: Use of the IMU

The IMU data is used primarily for two purposes:

1. Selection and ordering of images: We use the IMU
data to select representative images from the video and
arrange them into rectangular grid according to the
‘spatial’ neighborhood. It also disambiguates situa-
tions when multiple images that are spatially distant,
but have similar, repeated features.

2. Super-panorama: Whenever there are no features in
the overlap region of two images, we use the IMU data
to find the relative position of one mini-panorama with
respect to another.



4. Experiments and Results
All our experiments have been completed with the inex-

pensive consumer quadcopter called a Parrot’s AR Drone
2.0. The imagery acquired were from actual graffiti painted
on large walls as well as posters in an exhibition. We have
used the ROS based ARDrone Autonomy Driver to com-
municate with the drone. For the purpose of showing the
efficacy of this paper, we also took a picture of the scene
from a distance with a smartphone camera to better under-
stand the scene.

We have implemented our algorithm in C++ using the
OpenCV library. Experiments were performed on a PC with
Intel Core i7 processor(@3.4GHz) and 8GB RAM. Please
visit http://goo.gl/sYvoVP for datasets and code re-
lated to the paper.

4.1. Selecting Images

In our first experiment, we wanted to ensure that the se-
lection of images done was comprehensive and useful. We
sent the drone to image an outdoor scene with no vacant
space. This experiment was conducted in an outdoor envi-
ronment. We note here that there were approximately 3000
images in the raw video. AutoStitch and Photoshop were
unable to cope when fed with this large number of frames.

One way to produce some sort of mosaic was to sim-
ply reduce the amount of data given to AutoStitch. Fig-
ure 8(a) shows uniformly (time) sampled images from the
video. When these sampled images are given to AutoStitch
or to Adobe Photoshop, we find (Figure 8(b)) that these pro-
grams are able to produce some output, but the results are
not satisfactory.

Instead of feeding time-sampled images, we ran our se-
lection algorithm (Section 3.2) on the video which resulted
in N = 5 images. Though the number of input images in
the video is large, the total distance covered by the quad-
copter in this duration (of around 90 seconds) is small; thus
the number of distinct images returned by the algorithm
shows a dramatic reduction. Figure 8(c) shows examples
of selected images. Many of the images are similar to the
time sampled version; however, the occasional differences
are enough to make AutoStitch work. The results are shown
in Figure 8(d).

In summary, this experiment provides evidence to show
that (a) our selection algorithm is reasonable and (b) our
stitching results are comparable to that of AutoStitch for
the kind of scenes considered.

4.2. Indoor Imagery with Vacant Spaces

Our next selection of experiments were conducted in an
indoor environment.

The input stream had about 4300 images. The selection
algorithm pruned the video into N = 5 images. A sample
of the selected images are seen in Figure 1.

(a) 
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Figure 8: (a) Uniformly sampled images from an outdoor
video expedition. (b) Output of the state of the art photo
stitchers (left:AutoStitch, right:Adobe Photoshop CS6) on
uniformly time sampled images. As time sampled images
do not guarantee coverage of the scene, the panorama is bro-
ken. The top portions (see (b) & (d)) do not belong at the
right place (c) Salient image selection from the set of ap-
proximately 3000 images using positional information. (d)
When salient images are given to AutoStitch (left) and Pho-
toshop (middle), we can create a panoramic mosaic (since
there are no vacant spaces). We also show the result from
our stitching algorithm (bottom right).

There were two disconnected components in the result-
ing graph. AutoStitch was unable to produce any reasonable
output as seen in Figure 1. The scene, captured from a dis-
tance is also shown. We see a better orthographic view of
the posters in our result shown in Figure 1(right bottom).

In an another experiment, the input stream had about
9000 input images. The selection algorithm pruned the
video into N = 13 images. A sample of the selected im-
ages are seen in Figure 9(a). The scene as captured by a
smartphone can also be seen, as well as the outputs of the
state of the art stitchers. Note that AutoStitch is only able
to stitch the upper half of the scene. Our result Figure 9(e)
clearly stands out in comparison.

http://goo.gl/sYvoVP
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Figure 9: (a) Salient images from the quadcopter video us-
ing our selection algorithm of (b) an indoor scene. This
long range photograph has been captured separately by a
smartphone camera only for context. Notice a significant
vertical vacant space (around three feet) in the imagery. (c)
Output of AutoStitch – only the upper half of the scene is
output. (d) Output of Adobe Photoshop CS6 – the vacant
space posed a problem to the feature matching algorithm, so
instead of a mosaic, individual pieces were output as mini-
panoramas (e) Our output on the selected images. We are
able to present the scene in high fidelity in an orthographic
view.

4.3. Outdoor Imagery with Vacant Spaces

Our next set of experiments were conducted in an out-
door environment. The input stream had about 12000 im-
ages. The selection algorithm pruned the video into N = 30
images. A sample of the selected images are seen in Fig-
ure 10(a). The scene as captured by a smartphone can be
seen in Figure 10(b). Figures 10(c), (d) and (e) shows the
comparison of outputs of state of the art stitchers with the
output of our algorithm. Note that AutoStitch is getting
confused by too many matching features. Please see sup-
plementary material for results on other indoor as well as
outdoor datasets.

4.4. Analysis

The performance of our algorithm as a function of the
scene, as well comparison with other software is summa-
rized in Table 1. It can be seen that, whenever there is va-
cant spaces between adjacent images, AutoStitch produces
only one component, presumably the largest. Adobe Photo-
shop outputs all disconnected components. Sometimes due
to the lack of spatial proximity information, the resulting
images (or components) are disconnected instead of being
mosaiced (unlike AutoStitch). In contrast, in all cases, our
algorithm successfully uses proximity information which
results in a reduced number of mini-panoramas.

As expected the number of selected images in our
saliency algorithm varies based on environment consider-
ations (outdoor/indoor), the average depth from the scene,
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Figure 10: (a) An outdoor scene captured by a standard
camera in an exhibition. The approach to the area is nor-
mally cordoned off and one needs permission to get a quad-
copter to take the picture. Notice a significant gap (more
than two feet) between the two posters. (b) Salient images
from the quadcopter video using our selection algorithm.
(c) Output of AutoStitch on the selected images. The mo-
saic is not reasonable presumably because of the confusion
in features. (d) Output of Adobe Photoshop CS6 on the se-
lected images. The vacant space posed a problem to the fea-
ture matching algorithm, so instead of a mosaic, individual
pieces were output as mini-panoramas (e) Our output on the
selected images. We are able to join two posters (separated
by vacant space) using the IMU data.

and the total scene area.

5. Concluding remarks
In this paper, we have described a method of imaging

large scenes using a quadcopter enabling close orthographic
views. We also defined a new problem, that of comput-
ing a mosaic of a planar scene with vacant spaces. Vacant
space relates to images in an input stream where there are
not enough features for traditional mosaicing algorithms to
estimate geometric warps to align the images.

Our solution to this problem is to use an autonomous
quadcopter which is capable of taking pictures. The quad-
copter has an inertial measurement unit that is capable of
outputting reasonable spatial locations, but unreliable roll,
yaw and pitch. Using this positional information, our algo-
rithm selects an “interesting” subset of the video imagery.
Whenever there is overlap in feature space in the subset, we



Dataset
Number of
Images in

video

Approx.
planar area

covered

Number of
selected
images

AutoStitch:
# Compo-

nents

Photoshop:
# Compo-

nents

Our
algorithm:

#mini-
panoramas

Remarks

Lady 3000 60 sqft. 5 1 1 1 As there are enough features in the intersection of selected images, AutoStitch,
Photoshop as well as our algorithm produces the panorama correctly.

Indoor
exhibition 4300 40 sqft. 5 1 2 2

As there is vacant space between the two posters, AutoStitch produces only one
panoramic image. Photoshop outputs two posters as two disconnected compo-
nents; these correspond to our mini-panoramas.

Cars 9000 60 sqft. 13 1 3 3

As there is vacant space between the two visuals, AutoStitch produces only one
panoramic image, the black vehicle. In the case of Photoshop, two of the three
disconnected components represents two partial visuals, while the third compo-
nent is the intersection between the two cars – this portion contains featureless
space.

Outdoor
exhibition 12000 80 sqft. 30 1 4 2

AutoStitch is confused by the replicated features in the two posters which are
sometimes proximal and sometimes geographically distant. A single panorama
is produced, but the output is incorrect. We use the IMU data for arranging the
images in spatial neighborhood; we have fewer mini-panoramas. Photoshop is not
able to produce a super-panorama and the number of disconnected components in
Photoshop’s output is larger than the number of mini-panoramas.

Table 1: Quantitative summary of results.

stitch images using traditional vision-based methods avoid-
ing the erroneous roll based warping. At other times, we use
positional information, and reduce the resulting problem of
computing a complete panorama to the stereo problem of
merging mini-panoramas. Our method works on both in-
door and outdoor scenes.

Controlling a consumer-focused inexpensive quadcopter
can be problematic; for instance the quadcopter could have
severe yaw and roll. For future work, vision based algo-
rithms to control such quadcopters might be quite useful.
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